Fractional Linear Multistep Methods for Abel-Volterra Integral Equations of the Second Kind

نویسنده

  • By Ch. Lubich
چکیده

Fractional powers of linear multistep methods are suggested for the numerical solution of weakly singular Volterra integral equations. The proposed methods are convergent of the order of the underlying multistep method, also in the generic case of solutions which are not smooth at the origin. The stability properties (stability region, A-stability, A(a)-stability) are closely related to those of the underlying linear multistep method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The solving linear one-dimemsional Volterra integral equations of the second kind in reproducing kernel space

In this paper, to solve a linear one-dimensional Volterra  integral equation of the second kind. For this purpose using the equation form, we have defined a linear transformation and by using it's conjugate and reproducing kernel functions, we obtain a basis for the functions space.Then we obtain the solution of  integral equation in terms of the basis functions. The examples presented in this ...

متن کامل

NUMERICAL SOLUTION OF LINEAR FREDHOLM AND VOLTERRA INTEGRAL EQUATION OF THE SECOND KIND BY USING LEGENDRE WAVELETS

In this paper, we use the continuous Legendre wavelets on the interval [0,1] constructed by Razzaghi M. and Yousefi S. [6] to solve the linear second kind integral equations. We use quadrature formula for the calculation of the products of any functions, which are required in the approximation for the integral equations. Then we reduced the integral equation to the solution of linear algebraic ...

متن کامل

Fuzzy collocation methods for second- order fuzzy Abel-Volterra integro-differential equations

In this paper we intend to offer new numerical methods to solve the second-order fuzzy Abel-Volterraintegro-differential equations under the generalized $H$-differentiability. The existence and uniqueness of thesolution and convergence of the proposed methods are proved in details and the efficiency of the methods is illustrated through a numerical example.

متن کامل

Solving Volterra Integral Equations of the Second Kind with Convolution ‎Kernel‎

In this paper, we present an approximate method to solve the solution of the second kind Volterra integral equations. This method is based on a previous scheme, applied by Maleknejad ‎et al., ‎‎[K. Maleknejad ‎and Aghazadeh, Numerical solution of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method, ‎Appl. Math. Comput.‎ (2005)]‎ to gain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007